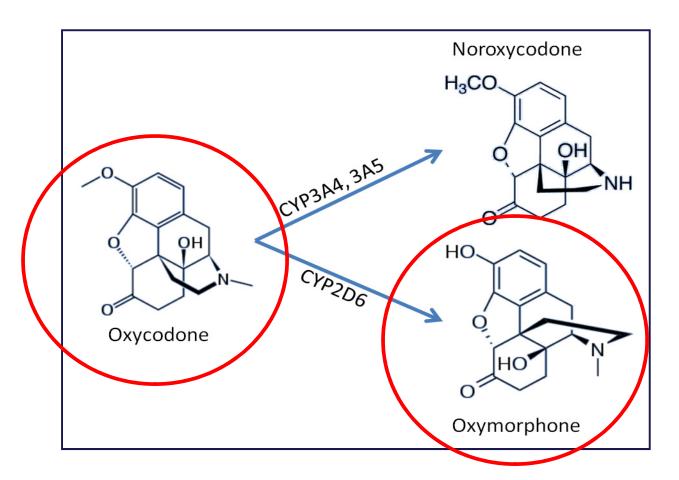


Observations on the Urine Metabolic Ratio of Oxymorphone to Oxycodone in Pain Patients

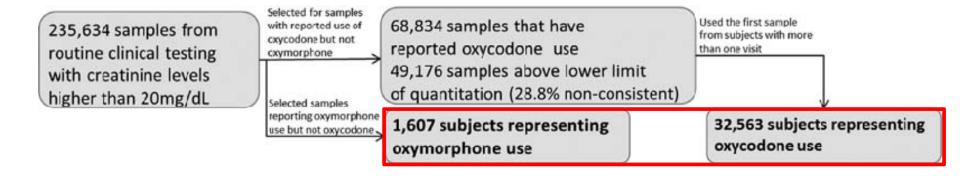

David A. Yee1, Brookie M. Best1,3, Rabia S. Atayee1,2 and Amadeo J. Pesce4,5*

1University of California, San Diego (UCSD), Skaggs School of Pharmacy & Pharmaceutical Sciences, San Diego, CA, 2UCSD Department of Internal Medicine, UCSD Medical Center, San Diego, CA, 3UCSD Department of Pediatrics, Rady Children's Hospital, San Diego, CA, 4Millennium Laboratories, San Diego, CA, and 5Department of Pathology and Laboratory Medicine, UCSD School of Medicine

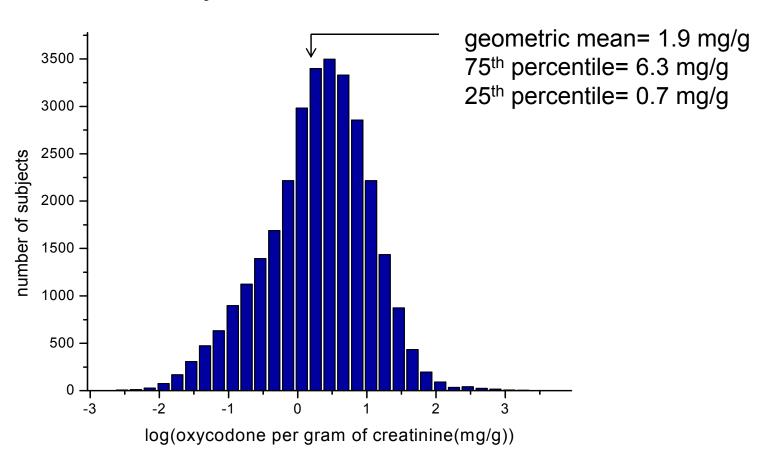
Oxycodone Metabolism

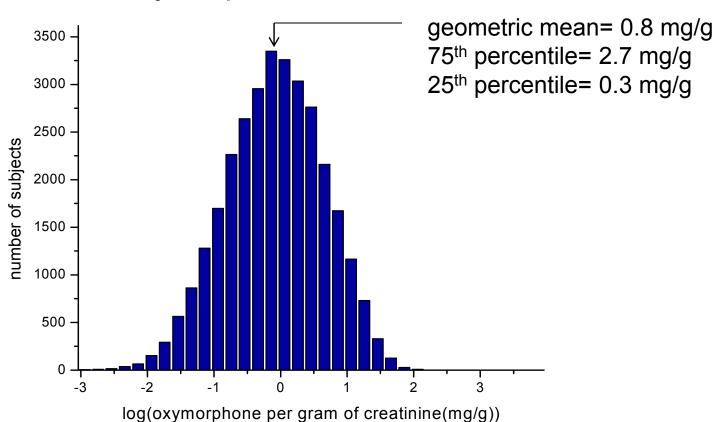
metabolic ratio= [oxymorphone mg/g creatinie] / [oxycodone mg/g creatinie]

Glucuronidation of Oxycodone and Oxymorphone


Percent Glucuronidated Oxycodone and Oxymorphone from 115 Subjects

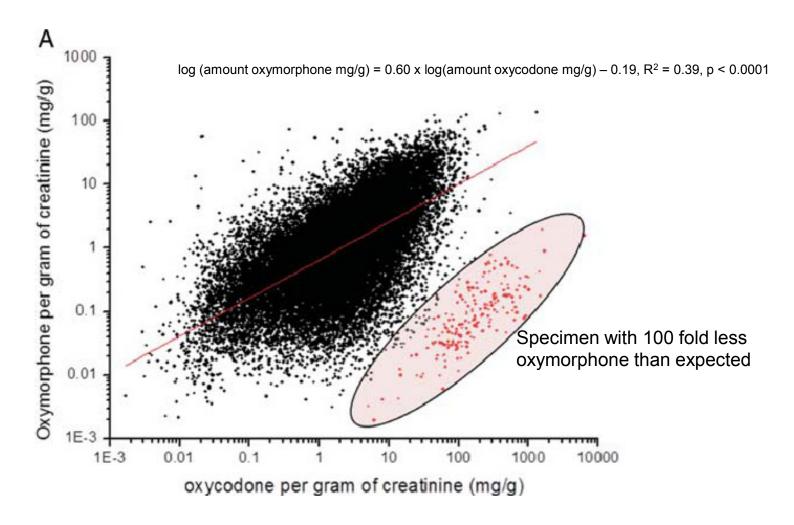
	Oxycodone	Oxymorphone (oxycodone use)	Oxymorphone (oxymorphone use)
Mean	3.05	93.16	99.11
Median	4.49	97.32	100.00
Skewness	-1.68	-4.33	-1.97
75th percentile	10.83	100.00	100.00
25th percentile	-3.59	94.70	98.77
Standard deviation	12.92	16.97	1.65


Sample Selection

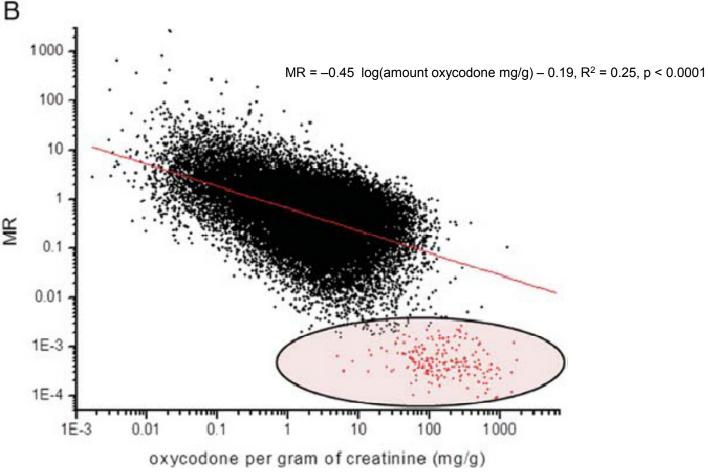

Oxycodone Distribution

Oxymorphone Distribution

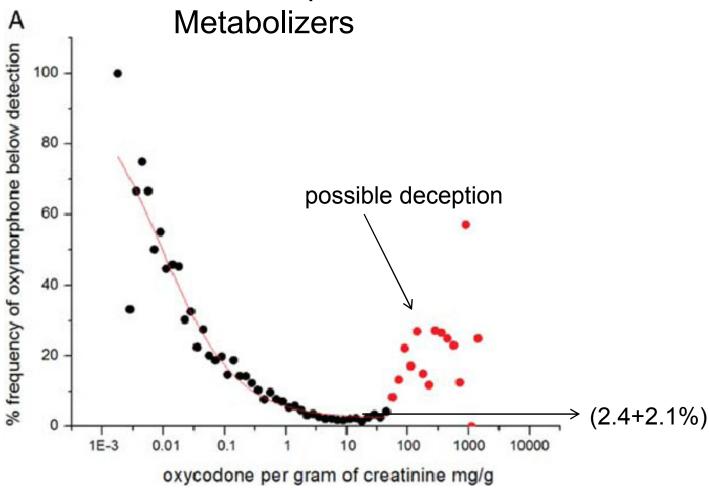
Distribution Statistics

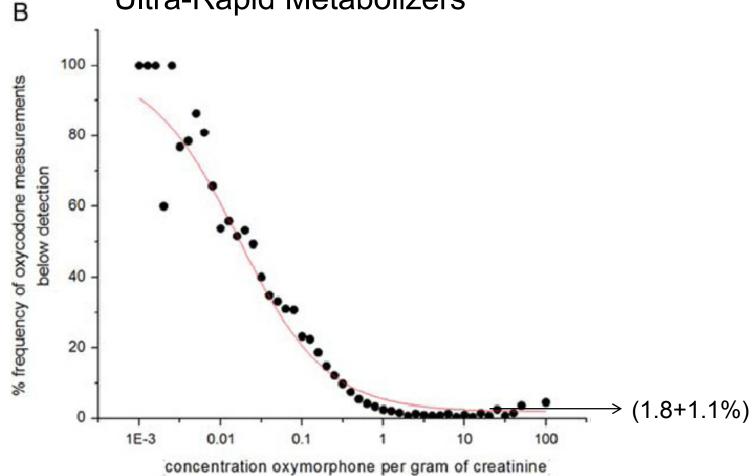

Table IStatistical Data Generated from Population Distributions of Both Urine Concentrations and their Corresponding Values Normalized Using Creatinine Values

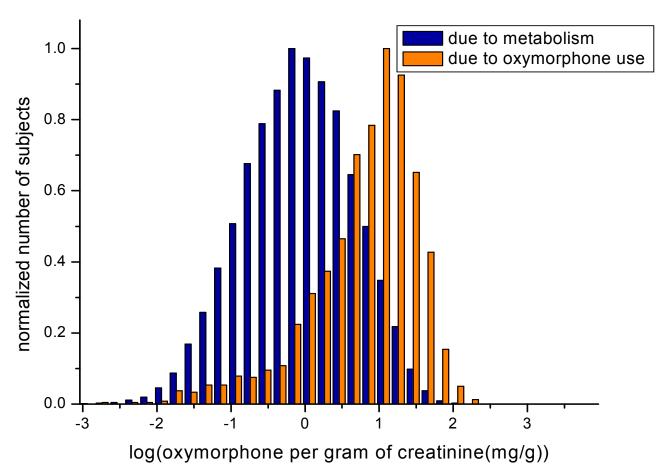
	Oxycodone (ng/mL)	Oxymorphone (ng/mL)	Oxycodone (mg/g) Creatinine corrected	Oxymorphone (mg/g) Creatinine corrected
Number of non-zero measurements	30,455	31,473	30,455	31,473
Mean	9,015	3,092	7.8	2.8
Geometric mean	1,998	846	1.9	0.8
Standard deviation	35,040	6,858	50.4	5.9
Geometric standard deviation	6.2	5.5	5.6	5.4
Median	2,244	876.3	2.2	0.9
Skewness	-0.2	-0.1	-0.4	-0.2
75th percentile	71,067	2,816	6.3	2.7
25th percentile	607.3	257.6	0.7	0.3


Oxycodone vs. Oxymorphone

Oxycodone vs. Metabolic Ratio




Estimation of the Proportion of Poor


Estimation of the Proportion of Ultra-Rapid Metabolizers

Oxymorphone from Metabolism Compared to Oxymorphone as a Medication

Limitations

- This was a retrospective analysis conducted on urine specimens submitted for "medication" monitoring from "physicians' offices".
- Dose and time after dose were unknown.
- Liver and renal status of subjects in the population is unknown.
- Reported medications are listed by physicians that may, if not accurate, misrepresent subjects.
- Although these factors will affect metabolism and excretion of oxycodone, the data set was used to represent the pain patient population as a whole and no inferences about individual subjects were made.
- More clinical data is needed for interpretation of clinical effects of results presented.

Acknowledgements

Preceptors:

Dr. Amadeo Pesce

Dr. Brookie Best

Dr. Rabia Atayee

Dr. Joeseph Ma

Colleagues:

Michelle Hughes Fowler, Edij Lamanis, Neveen Barakat, Stephanie Tse, Samantha Luk, Katie Moy, Alex Guo, Natalie Elder, Sophie Bordson

UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences

Millennium Laboratories & Millennium Research Intsitute

Questions

References

- 1. Cone, E.J., Fant, R.V., Rohay, J.M., Caplan, Y.H., Ballina, M., Reder, R.F. et al. (2003) Oxycodone involvement in drug abuse deaths: a DAWN-based classification scheme applied to an oxycodone postmortem database containing over 1000 cases. Journal of Analytical Toxicology, 27, 57–67.
- 2. Craig, D.S. (2010) Oxymorphone extended-release tablets (Opana ER) for the management of chronic pain: A practical review for pharmacists. Pharmacy & Therapeutics, 35, 324–357.
- Ross, F.B., Smith, M.T. (2007) The intrinsic antinociceptive effects of oxycodone appear to be I-opioid receptor mediated. Pain, 73, 151–157.
- 4. Samer, C.F., Daali, Y., Wagner, M., Hopfgartner, G., Eap, C.B., Rebsamen, M.C. et al. (2010) Genetic polymorphism and drug interactions modulating CYP2D6 and CYP3A activities have a major effect on oxycodone analgesic efficacy and safety. British Journal of Clinical Pharmacology, 160, 916–930.
- 5. Trescot, A.M., Datta, S., Lee, M., Hansen, H. (2008) Opioid pharmacology. Pain Physician, 11, S133–S153.
- 6. Prommer, E. (2005) Oxymorphone: A review. Supportive Care in Cancer, 14, 109–115.
- 7. Lalovic, B., Kharasch, E., Hoffer, C., Risler, L., Liuchen, L., Shen, D.D. (2006) Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: Role of circulating active metabolites. Clinical Pharmacology and Therapeutics, 79, 461–479.
- 8. Model Policy for the Use of Controlled Substances for the Treatment of Pain. House of Delagates of the Federation of State Medical Boards of the United States, Inc. (2004) http://www.fsmb. org/pdf/2004_grpol_controlled_substances.pdf (accessed May 25, 2010).
- 9. Trescot, A.M., Boswell, M.V., Atluri, S.L., Hansen, H.C., Deer, T.R., Abdi, S. et al. (2006) Opioid guidelines in the management of chronic non-cancer pain. Pain Physician, 9, 1–40.
- 10. Chou, R., Fanciullo, G.J., Fine, P.G., Adler, J.A., Ballantyne, J.C., Davies, P. et al. (2009) Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain. Journal of Pain, 10, 113–130.
- 11. Cook, J.D., Caplan, Y.H., LoDico, C.P., Bush, D.M. (2000) The characterization of human urine for specimen validity determination in workplace drug testing: A review. Journal of Analytical Toxicology, 24, 579–588.

- 12. Heit, H.A., Gourlay, D.L. (2004) Urine drug testing in pain medicine. Journal of Pain Symptom Management, 27, 260–267.

 13. Cone, E.J., Darwin, W.D., Buchwald, W.F., Gorodetzky, C.W. (1983) Oxymorphone metabolism and urinary excretion in human, rat, guinea pig, rabbit, and dog. Drug Metabolism and Disposition, 11, 446–450.
- 14. Po" yhia", R., Seppa" la", T., Olkkola, K.T., Kalso, E. (1992) The pharmacokinetics and metabolism of oxycodone after intramuscular and oral administration to healthy subjects. British Journal of Clinical Pharmacology, 33, 617–621.
- 15. Baselt, R.C. (2008) Disposition of toxic drugs and chemicals in man, 8th edition. Biomedical Publications, Foster City, CA, pp. 1166–1168.
- 16. Fishbain, D.A., Fishbain, D., Lewis, J., Cutler, R.B., Cole, B., Rosomoff, H.L., Rosomoff, R.S. (2004) Genetic testing for enzymes of drug metabolism: Does it have clinical utility for pain medicine at the present time? A structured review. Pain Medicine, 5, 81–93.

 17. Lalovic, B., Phillips, B., Risler, L.L., Howald, W., Shen, D.D. (2004) Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metabolism and Disposition, 32, 447–454.
- 18. Sistonen, J., Fuselli, S., Palo, J.U., Chauhan, N., Padh, H., Sajantila, A. (2009) Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenetics and Genomics, 19, 170–179.
- 19. Somogyi, A.A., Barratt, D.T., Coller, J.K. (2007) Pharmacogenetics of opioids. Clinical Pharmacology and Therapeutics, 81, 429–444. 20. Stamer, U.M., Bayerer, B., Stu" ber, F. (2005) Genetics and variability in opioid response. European Journal of Pain, 9, 101–104.
- 21. Wolf, B.C., Lavezzi, W.A., Sullivan, L.M., Flannagan, L.M. (2005) One hundred seventy two deaths involving the use of oxycodone in Palm Beach County. Journal of Forensic Sciences, 50, 192–195.

 22. Kaiko, R.F., Benziger, D.P., Fitzmartin, R.D., Burke, B.E., Reder, R.F., Goldenheim, P.D. (1996) Pharmacokinetic-pharmacodynamic relationships of controlled-release oxycodone. Clinical Pharmacology and Therapeutics, 59, 52–61.